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Coherent Excitation with Phase-Incremented Pulses
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An outline is given for calculating the evolution of a spin system
by a pulse sequence with phase-incremented pulses (PIPs). It is done
in a frame with a speed of 2π∆f = ∆ϕ/∆τ relative to the rotating
frame, where ∆ϕ and ∆τ are the phase- and time-increment of the
PIP. This particular frame is defined as the eigenframe, in which the
phase of the PIP for the center band is stationary and is subjected
to a universal phase shift (UPS =−∆ϕ/2), and the strength of
the PIP is scaled by a factor of λ=

√
2[1− cos(∆ϕ)]/|∆ϕ|. The

phase differences between different eigenframes can be attributed
to the initial phases of the PIPs, making it possible to use the Bloch
vector model even in different eigenframes. A new way is provided
to construct composite pulses with not only amplitude and phase
modulations but also offset modulation. Several examples, includ-
ing a broadband inversion pulse, a Hahn spin echo, and a selective
inversion and null pulse, all composed of PIPs, are discussed in
detail. C© 2002 Elsevier Science

Key Words: coherent excitation; phase-incremented pulse; uni-
versal phase shift; scaling factor of pulse strength; phase inheri-
tance.
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INTRODUCTION

Phase-incremented pulse (1–6) (PIP) is used commonly in
multidimensional NMR experiments (7–10) to achieve frequ-
ency-shifted (or jumped) excitation usually in the13C channel at
high field. Unlike a real jump of the carrier frequency in some
the NMR experiments, PIPs will not distort the phase cohere
between the RF pulses applied before and after PIPs. The
require almost no delay and have no noticeable phase glitche
modern NMR instruments. Also, the amount of frequency s
1 f can be made sufficiently large to cover the entire range o
13C chemical shift even at the highest magnetic field availa
now.

Often PIP is adapted in a noncoherent way; i.e., the ph
of the pulse plays no role in the experiments. For exampl
frequency-shifted selective inversion of13Cα spins in the mid-
dle of the13CO evolution for homonuclear decoupling has
restriction on the phase of the pulse. Things become quite
ferent when coherent excitation, with a number of PIPs, is
quired. One faces a special case where a spin experienc
on-resonance excitation but off-resonance evolution in the (c
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ventional) rotating frame (11). It is more intriguing if different
PIPs have different frequency shifts. Under such a circumsta
the evolution of a spin system has to be calculated in differ
rotating frames, in which the phase relationship and the off
must be taken into account cautiously.

The phase coherence between pulses and scans is critic
NMR experiments. It is maintained through a reference s
nal (Fig. 1) that provides a phase reference for all the pu
applied at any time. For example, if the first pulse, describ
by Amax sin(ωrf t), is applied at a timet = 0, the second pulse
applied at a timets from the beginning of the pulse sequenc
must have the form of

Amaxsin[ωrf (t − ts)+ ϕs], ts ≤ t, [1]

in order to keep the same phase as the first one. In Eq.
ϕs=ωrf ts is inherited from the reference signal as shown
Fig. 1. It can be considered that the first pulse is extended c
tinuously to the second one with zero amplitude in the pu
interval. Little attention has been paid to the phase inherita
in NMR experiments since the NMR instrument takes care o
automatically for users.

For a frequency-shifted excitation by a PIP (Fig. 2), the eff
tive carrier frequencyÄωrf/2π (or the on-resonance) is shifted t
1 f +ωrf/2π . Therefore, the phase of the PIP should be defin
in a rotating frame with a speed of 2π1 f relative to the rotating
frame since only in this frame is the phase of the PIP for
center band stationary (Fig. 2). This particular rotating fram
defined as the eigenframe of the PIP, where the evolution o
density operator can be calculated as if in the rotating frame.
more than one PIP, the phase inheritance must also be satisfi
in the case of the RF pulses (Fig. 3) to maintain phase cohere
For the most simplified phase inheritance with two consecu
PIPs, the phase of the first increment of the PIP2 must have a
value that is one increment1ϕ greater than the phase of th
last step of the PIP1 in order to keep the same phase of the t
PIPs, where phase increment1ϕ is the same for both PIPs. Th
phase inheritance for PIPs will be defined in a broader wa
the following.

In this contribution, an outline for calculating the evolutio
of a spin system by phase-incremented pulses (PIPs) wil
1090-7807/02 $35.00
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FIG. 1. A reference signal (top) used as a phase reference for RF pu
applied at any time. The initial phases of the first and second pulses are inh
from the reference signal at timet = 0 andt = ts, respectively. Consequently
both pulses have the same phase.

presented first, and it is then applied to calculate a numbe
sequences composed of PIPs.

OUTLINE OF CALCULATION

A spin system initially in thermal equilibrium is usually de
scribed by a density operatorσ (0), which is proportional to
Iz under the high temperature approximation (12). After a 90◦

pulse, the system will evolve under the Hamiltonian, and
density operatorσ (t) in the rotating frame with a speed of th
carrier frequency (ωrf/2π ) can be written as (12, 13)

σ (t)= L(t)σ (0)L−1(t), [2]

where the unitary propagator is defined as

L(t)=Te−i
∫ t

0 H(t ′) dt′ , [3]

FIG. 2. The relationship between the excitations in the rotating frame

a RF pulse and in the eigenframe by a PIP. The offset in the eigenframeÄ1 is
measured from the effective carrierÄωrf/2π =1 f +ωrf/2π , where the frequency
shift1 f =1ϕ/2π1τ .
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FIG. 3. Schematic representation of the phase inheritance for two P
applied consecutively with the same phase increment1ϕ and time increment
1τ .

andT is the Dyson time ordering operator. The Hamiltonian
the system in the rotating frame can be expressed as

H(t)= (ω0− ωrf)Iz+Hin + ω1(t) · I , [4]

where the chemical-shift term for a particular resonance f
quencyω0/2π is shown explicitly for simplicity and the trun-
cated time-independent internal HamiltonianHin includes all the
other spin interactions,J coupling for instance.ω1(t) in Eq. [4]
represents the strength and phase of the RF field.

For a phase-incremented pulse, the last term in Eq. [4] can
expressed as

ω1(t) · I =ω1(t)e−i [ϕ0+ϕ(t)] Iz Ixei [ϕ0+ϕ(t)] Iz, [5]

whereϕ0 is the initial phase, andϕ(t) is the phase that incre-
ments, i.e.,

ϕ(t)=



0, 0≤ t < 1τ

1ϕ, 1τ ≤ t < 21τ

21ϕ, 21τ ≤ t < 31τ
· · · · · ·
(N − 2)1ϕ, (N − 2)1τ ≤ t < (N − 1)1τ

(N − 1)1ϕ, (N − 1)1τ ≤ t ≤ N1τ,

[6]

whereN is the number of steps of the PIP and−π <1ϕ≤π .
In general, any PIP (Fig. 3) can be represented by the nota
of PIP1 f (ϕ0,1ϕ,1τ, ω1(t), steps), where1 f, ϕ0, 1ϕ, 1τ ,
andω1(t) are the frequency shift (in kHz), initial phase, pha
increment, time increment, and pulse strength, respectively.
frequency shift of the center band is well known (1, 3–6),

1 f = 1ϕ
, [7]
2π1τ

as shown in Fig. 2.
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COHERENT

PIP also excites multiple unsymmetrical sidebands (6) located
at j/1τ ( j = ±1, ±2, . . . ) from the center band. For a suffi
ciently small1τ , the sidebands are far outside of the spec
width where there are usually no NMR peaks at all. Con
quently, the sideband excitations have little effect on the ce
band and therefore will be neglected in the following.

Due to the complication of the PIPs, any attempt trying
solve Eq. [2] in the rotating frame is rather discouraging. It
however, quite intuitive to introduce a new rotating frame w
a speed of

Äω= 2π1 f = 1ϕ
1τ

, [8]

relative to the rotating frame. Only in this eigenframe (deno
by the symbolÄ ) is the phase of the PIP a constant.

The Hamiltonian in Eq. [4] can be transferred into the eig
frame with a unitary operatorU = e−i Äωt Iz (6, 11)

ÄH(t) = U−1HU − iU −1 ·U

= (1ω − Äω)Iz+ ÄHin + ω1(t)ei Äωt Iz

× [e−i [ϕ0+ϕ(t)] Iz Ixei [ϕ0+ϕ(t)] Iz
]
e−i Äωt Iz

≈ 1Äω Iz+Hin + λω1(t)e−i (ϕ0−1ϕ

2 )Iz Ixei (ϕ0−1ϕ

2 )Iz, [9]

where1ω/2π = (ω0−ωrf)/2π is the offset in the rotating
frame,1Äω/2π = (ω0 − ωrf − Äω)/2π is the offset in the eigen
frame (Fig. 2),λ is a scaling factor of the RF field streng
(defined in Eq. [11]), and−1ϕ/2 is a phase shift (defined i
Eq. [12]). In Eq. [9],ÄHin = Hin since the truncated interna
interaction commutes withIz, i.e., [Hin, Iz]= 0.

As shown in Fig. 4, the phase of the RF field in the eigenfra
Äϕ(t)= (1ϕ/2)[1− (2t/1τ )] for 0 ≤ t ≤ 1τ , is periodic and
the effective field for the center band excitation can be expre
as (6)

ω1 · I
2π

= f1

1τ

1τ∫
0

{Ix cos[Äϕ(t)] + I y sin[Äϕ(t)]} dt

=
√

2[1− cos(1ϕ)]

|1ϕ| f1Ix, [10]

which implies that the RF field strength is scaled by a facto

λ=
√

2[1− cos(1ϕ)]

|1ϕ| . [11]

Equation [10] is equivalent to taking a zero-order averaging

the interaction in the eigenframe.

A phase shift is also introduced in the eigenframe (Fig. 4
which is termed the universal phase shift (UPS) and exists in
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FIG. 4. (Top) The phases of a phase-incremented pulse (step function),
a time increment of1τ and phase increment of1ϕ, and of a phase linearly,
continuously increased pulse (straight line) in the rotating frame. The two ph
of the pulses cross in the middle of each increment, leading to an initial ph
shift of −1ϕ/2 for the phase continuous pulse. (Bottom) The phase of
phase-incremented pulse in the eigenframe with a speed ofÄω=1ϕ/1τ relative
to the rotating frame. It is the difference between the two phases shown
the top.

sideband excitations (6),

UPS=−1ϕ
2
. [12]

The definitions ofλ and UPS are slightly different from the
previous article (6), where, for1ϕ<0, λ(=√2[1− cos(1ϕ)]/
1ϕ) becomes negative and UPS (=−π −1ϕ/2) includes a−π .
However, the overall effect is the same.

The evolution of the density operator can be calculated in
eigenframe first and it is then transferred into the rotating fram
For a pulse sequence of any number of PIPs, the density ope
is described by

σ (t1+ t2+ · · · + tn)

=Un · · ·U2U1ÄLn(tn) · · ·ÄL2(t2)ÄL1(t1)σ (0)

×ÄL−1
1 (t1)ÄL−1

2 (t2) · · ·ÄL−1
n (tn)U−1

1 U−1
2 · · ·U−1

n , [13]

where the shifted-propagatorÄL k(tk)(k 6= 1) in the eigenframe is
defined as

ÄL k(tk) = U−1
1 U−1

2 · · ·U−1
k−1
ÄLk(tk)Uk−1 · · ·U2U1

−i
∫ tk U−1U−1···U−1 ÄH (t ′)U ···U U dt′
),
all

= Te 0 1 2 k−1 k k−1 2 1

= Te−i
∫ tk

0 ÄHk(t ′) dt′ . [14]
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In the above equation,

ÄHk(t)=1Äωk Iz+Hin

+ λkω1k(t)e−i (ϕ0k+UPSk−φk−1)Iz Ixei (ϕ0k+UPSk−φk−1)Iz [15]

is the shifted-Hamiltonian of the PIPk in the eigenframe, and

φk−1= Äω1t1+ Äω2t2+ · · · + Äωk−1tk−1 [16]

is the sum of all the phases accumulated through the chang
the eigenframes before the PIPk.

The phase of the PIPk (Eq. [15]),

ϕk=ϕ0k + UPSk − φk−1, [17]

is determined not only by its own initial phaseϕ0k and UPSk but
also by an inherited phaseφk−1 from all the previous PIPs. Equa
tion [17] is a more general expression of the phase inherita
for any PIP. Unlike the normal RF pulses, this phase inherita
must be taken care of by the user rather than by the NMR ins
ment. To have a desired phaseϕk of the PIPk, the initial phase
ϕ0k can be adjusted.

Equation [13] allows us to calculate the response o
spin system by any number of PIPs. The unitary opera
U−1

1 U−1
2 · · ·U−1

k−1 act on the propagatorÄLk (Eq. [14]), caus-
ing only a phase shift of the PIPk (Eq. [15]). The shifted
propagatorsÄL k · · ·ÄL2ÄL1 act consecutively on the density o
erator without the frame transfer as if in the rotating frame w
a single carrier. The offset, however, must be calculated in
eigenframe of each PIPk, i.e.,1Äωk/2π = (ω0− ωrf − Äωk)/2π .

It is worth mentioning that Eq. [13], derived from the PIP
is actually rather general and can be used for any pulse
quences with or without PIPs. If1ϕ of a PIP equals zero
the PIP1 f (ϕ0,1ϕ= 0,1τ, ω1(t), steps) reduces to a norma
pulse. If, on the other hand,ω1= 0 (correspondingly,ϕ0= 0
and1ϕ= 0), the PIP reduces to a delay with a delay time eq
to the pulse width. Equation [13] can also be applied to pu
sequences with a real jump of a carrier frequency if the ph
change resulted from each frequency jump is known.

APPLICATIONS

To show the applications of the above results, three exp
ments are discussed. Two of them, a broadband inversion a
Hahn spin echo, are well known and described in the rota
frame. They need modifications in order to work in the eig
frame. The third one is a composite pulse with offset modulat

Assume a broadband inversion pulse (14) (90◦x180◦y90◦x) is
adapted to excite a region 50 kHz away from the carrier
quency. The three RF pulses are replaced by three PIPs
PIP has 50 steps, a time increment1τ = 0.5 µs, and a phase
1

increment1ϕ= 9◦ that is determined from Eq. [7]. The puls
can be represented by PIP150(4.5◦, 9◦, 0.5µs, 10.01 kHz, 50),
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where the RF field strength 10.01 kHz is calculated from
90◦ pulse width (25µs) and the scaling factorλ (= 0.99897).
An initial phaseϕ0= 4.5◦ is used in the PIP1 to compensate the
UPS1= −(1/2)1ϕ= −4.5◦, otherwise the PIP1 would have a
phase of−4.5◦ rather than 0◦ (or thex phase).

To achieve the same frequency shift as the PIP1, the PIP2 and
PIP3 have the same1τ ,1ϕ, and the pulse strength as the PIP1.
Since the PIP2 is a 180◦ pulse, it has 100 steps. In addition to
own UPS2 (= −4.5◦), the PIP2 is also subjected to a inherite
phaseφ1 (= Äω1t1= 450◦) (Eq. [16]). To construct the PIP2 with
a 90◦ (or y) phase, the phase inheritance requires (Eq. [17])

ϕ2=ϕ02+ UPS2− φ1= 90◦, [18]

from which we getϕ02= 184.5◦. The PIP2 can be expressed a
PIP250(184.5◦, 9◦, 0.5µs, 10.01 kHz, 100). Similarly, PIP3 can
be determined as PIP350(−85.5◦, 9◦, 0.5 µs, 10.01 kHz, 50).
Here the final frame transfer to the rotating frame usingU3U2U1

(Eq. [13]) is not necessary since only the inversion profile
thez component of the magnetization) is of interest.

The simulated broadband inversion profile by the three PIP
shown in Fig. 5a, resembling the profile by the composite pu
90◦x180◦y90◦x except for different excitation regions. Figure 5
shows the profile by the same composite PIP but different in
phases,ϕ01 = 0◦, ϕ02 = 90◦, andϕ03= 0◦, which are used in
the original composite pulse. The inversion profile is distor
severely, showing that the right phase relationship in the rota
frame is a wrong one in the eigenframe.

For a Hahn spin-echo sequence (15), 90◦y–τ–180◦x–τ ′, the
magnetization in the rotating frame will be refocused to thx
axis at the end of the sequence. To create a spin echo 50 kHz
from the carrier frequency, two PIPs are required. The first◦y

FIG. 5. Simulated broadband inversion profiles by a composite (18◦)
e
PIP (a), PIP150(4.5◦, 9◦, 0.5µs, 10.01 kHz, 50) PIP250(184.5◦, 9◦, 0.5µs,
10.01 kHz, 100)PIP350(−85.5◦, 9◦, 0.5µs, 10.01 kHz, 50), and by the same
PIPs but different initial phases (b),ϕ01= 0◦, ϕ02= 90◦, andϕ03= 0◦.
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pulse can be replaced by PIP150(94.5◦, 9◦, 0.5µs, 10.01 kHz,
50), where the same parameters as the previous case are
A 4.5◦ phase is included in the initial phase to compensate
UPS (= −(1/2)1ϕ= −4.5◦). After the PIP1 there is a delayτ ,
during which the evolution of the density operator can still
considered in the eigenframe, as if the PIP1 were extended to the
entireτ with zero pulse strength. The initial phaseϕ02 of the PIP2

should satisfy the phase inheritanceϕ2 = ϕ02+UPS2−φ1= 0◦

in order to refocus the magnetization to thex axis in the eigen-
frame. However, to refocus the final magnetization to thex axis
in the rotating frame, the density operator in the eigenfra
needs to be transferred back to the rotating frame (Eq. [1
which introduces an additional phase shift ofÄω(3tw + τ + τ ′)
(tw represents the pulse width of the PIP1). To compensate this
phase shift, the magnetization should be refocused to an
with a phase of−Äω(3tw + τ + τ ′) rather than to thex axis in
the eigenframe. This can be accomplished by adding a ph
of −Äω(3tw + τ + τ ′)/2 to ϕ2 of the PIP2, leading to the phase
inheritance of

ϕ2=ϕ02+ UPS2− φ1=−Äω(3tw + τ + τ ′)/2, [19]

or

ϕ02 = Äω(tw + τ )+ 1ϕ
2
− Äω

2
(3tw + τ + τ ′)

= 1ϕ

2
− Äω

2
(τ ′ − τ + tw). [20]

For τ ′ = τ ,

ϕ20= 1ϕ
2
− Äω

2
tw, [21]

where the delay and the pulse width of the PIP2 disappear
due the refocusing nature of the 180◦ pulse. Only the UPS
(= −1ϕ/2) and the phase –Äωtw/2 (partially refocused) need
to be taken into account. From Eq. [21], the initial phase of
PIP2 can be determined,ϕ20=−220.5◦ or 139.5◦. The PIP2 is
then PIP250(139.5◦, 9◦, 0.5µs, 10.01 kHz, 50).

For τ ′ = τ − tw, however,

ϕ02= 1ϕ
2
, [22]

which is now independent of the pulse widthtw and delayτ . For
sufficiently small phase increment1ϕ, the phase relationship
of the two pulses, in the rotating frame and in the eigenfram
become the same.

In many triple-resonance experiments, HNCO for examp
coherence needs to be transferred from the amide15N to the

13 13 13 ◦
adjacent CO but not to the Cα. For this purpose, aCO 180
pulse is used in the INEPT segment, which inverts the13CO
region centered at 174 ppm but nulls the13Cα region centered at
XCITATION 77
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56 ppm. To achieve this, the RF field strength must satisfy
relationships of (7)

2π f1tw =π, for inversion of13CO [23]

and

2π
√

f 2
1 +12tw = 2mπ, for null of 13Cα, [24]

which leads to

f1= 1√
4m2− 1

, [25]

where1(≈118 ppm) is the difference of chemical shifts b
tween the centers of13CO and13Cα. Form= 1, corresponding
to a 2π rotation of13Cα, Eq. [25] reduces to

f1= 1√
3
. [26]

The inversion and null profiles of this scheme are shown
Fig. 6a. It has a narrow inversion and null bandwidths and
null point moves whenf1 varies.

FIG. 6. Simulated excitation profiles of selective inversion and null by
single RF pulse (a) and by two PIPs (b, c, and d). The single pulse is ap
on-resonance to the center of the13CO region (174 ppm, assigned to 0 kHz
with a pulse strengthf1= 15.42 kHz and pulse widthtw = 32.4µs. Under this
condition, the center of the13Cα region (56 ppm, corresponding to−26.7 kHz
at the 900-MHz field) is subjected to a 2π rotation, resulting in a null excitation
as shown in (a). For (b), two consecutive PIPs, PIP10(0◦, 0◦, 0.6µs, 15.42 kHz,
54) and PIP2-53.4(5.77◦, −11.54◦, 0.6µs, 15.42 kHz, 54), are used with th
PIP10 being the same as the RF pulse used in (a) and the PIP253.4 being a
compensating pulse. Profile (c) is obtained by adjusting slightly the cente
inversion and the overall rotation angle. The two PIPs used are PIP11.57(0.17◦,

0.34◦, 0.6 µs, 18.34 kHz, 51) and PIP2-54.95(11.36◦, −11.87◦, 0.6 µs,
18.34 kHz, 51). The compensation becomes rather poor (d) by exchanging the
order of the two PIPs used in (b) due to the failure of the phase-inheritance.
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FIG. 7. Offset compensated two consecutive 2π rotations by two PIPs
aroundn1 in the eigenframe of the PIP1 with a negative offset−Ä1 and around
n2 in the eigenframe of the PIP2 with a positive offsetÄ1. Both pulses have an
x phase but in different eigenframes.

To overcome these problems, a compensating pulse ca
applied on the other side of the13Cα region with a PIP. Since
the effective carrier frequency shifts from one side of the13Cα
region to the other, the effective offsetÄ1 in the eigenframe
changes sign. With the compensating pulse, the center of13Cα
is subjected to two consecutive 2π rotations of opposite offsets
one positive and the other negative, but of the same (x) phases in
the two different eigenframes, as shown in Fig. 7. In the vicin
of the center of13Cα, the sum of the two rotation angles can
expressed as

ϕ= 2π
√

f 2
1 + (Ä1− δ)2tw + 2π

√
f 2
1 + (Ä1+ δ)2tw, [27]

whereδ is an offset measured from the center of13Cα. For small
δ (compared withÄ1), Eq. [27] can be expanded in a series ofδ,

ϕ = 2π
√

f 2
1 + Ä12tw − 2π

Ä1tw√
f 2
1 + Ä12

δ + · · ·

+ 2π
√

f 2
1 + Ä12tw + 2π

Ä1tw√
f 2
1 + Ä12

δ + · · ·

= 4π
√

f 2
1 + Ä12tw + · · · ≈ 4π. [28]

In the above equation, the first-order terms inδ cancel, which
◦
implies that the deviation from a 360rotation of the PIP1 due

to a smallδ is compensated by the deviation of the PIP2. To
the first order ofδ, the rotation angleϕ ≈ 4π , leading to a re-
ORENSTEIN
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markable compensation. As a consequence, the null point a
13Cα region is broadened significantly (Fig. 6b). It is importa
to note that the inversion region of13CO is broadened as wel
by the compensating PIP2 (Fig. 6b) since the overall rotation
angle and axis by the two PIPs become quite insensitive to
offsets. It is calculated that the overall rotation angle at the c
ter of 13CO is about 161.46◦ rather than 180◦ but the rotation
axis is approximately in thex− y plane, causing an incomplet
inversion. Also the center of inversion is slightly shifted to th
upfield region. These effects are caused by the interference
tween the two bands and will disappear if the separation betw
the two bands is much greater than the RF field strength. It
be shown that the overall rotation becomes 179.97◦ when the
RF field strength is increased to 2π f1tw = 202◦. The small shift
of the inversion center can be corrected by adding a small ph
increment to the PIP1. The final result is shown in Fig. 6c.

As shown in Fig. 6d, the compensating effect becomes q
poor when the order of the two PIPs is changed due to the fai
of the phase-inheritance mentioned above.

The excitation in the middle can also be compensated by
plying two identical pulses simultaneously, one at the offset1

and the other at−1, as used in homonuclear decoupling to com
pensate the Bloch–Siegert shift (16, 17). The two simultaneous
pulses are equivalent to an amplitude-modulated pulse app
on-resonance to the middle and in the form of

H(t)= 2 f1Ix cos(2π1t), 0≤ t ≤ tw, [29]

where 2π f1tw =π is required for an inversion at1 or−1 and
the amplitude of the pulse is 2f1 because of the interferenc
between the two pulses. To have a zero excitation in the mid
the amplitude-modulated pulse must satisfy the relationship

2π1tw = jπ, j = 1, 2, . . . , [30]

which leads to a zero-order average Hamiltonian,

H(0)= 1

tw

tw∫
0

2 f1Ix cos(2π1t) dt= 0. [31]

Since [H(t ′),H(t ′′)]= 0, all the higher-order averag
Hamiltonians vanish. As a result, the middle point rema
unexcited no matter how strong the pulse is.

For a small offsetδ (measured from the middle), th
Hamiltonian in Eq. [29] should also include an offset termδ Iz,
i.e.,

H(t)= 2 f1Ix cos(2π1t)+ δ Iz. [32]
It can be shown that the RF pulse term in Eq. [32] is averaged to
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zero over the time oftw, and the first-order average Hamiltonia

H(1)= −i

2tw

tw∫
0

dt2

t2∫
0

[H(t2),H(t1)] dt1= 0, [33]

for j = 2 (Eq. [30]). Consequently, a compensation in the mid
with a similar range as in Fig. 6b is formed. The inversion profi
at1 and−1, however, are not compensated at all. The oth
disadvantage of this scheme lies in that it requires twice
amplitude of the RF pulse.

For j = 1, one can show thatH(1)
is no longer zero andf1 must

be increased two fold to meet the inversion condition (2π f1tw =
π ). As a result, the compensation in the middle vanishes alm
completely.

CONCLUSIONS

The evolution of a spin system by a pulse sequence
PIPs can be calculated in the eigenframe, where the stre
of the PIP for the center band is scaled by a factor
λ=√2[1− cos(1ϕ)]/|1ϕ| and the phase of the PIP is shifte
by the UPS= −1ϕ/2. The phase differences between differe
eigenframes can be attributed to the initial phase of the P
making it possible to use the Bloch vector model even in d
ferent eigenframes. The effective offsets, however, are differ
in different eigenframes and the final density operator need
be transferred back to the rotating frame only at the end of
sequence.

Due to the requirement of the phase inheritance, the orde
the PIPs in a pulse sequence is usually fixed even for symmet
excitation as shown in Fig. 6d.

At very high field, the13Cα and13CO chemical shift regions
for protein backbones, with a 118-ppm difference between
two centers, can be excited separately and coherently, one
the normal RF pulses in the rotating frame and the other w
the PIPs in the eigenframes.

The idea of coherent excitation provides a rigorous solut
for pulse sequences with PIPs. It is quite helpful in design
multidimensional NMR sequences at very high field when c
herent excitations of multibands are necessary, especially in
13C channel. Almost all the existing methods (18), developed in
the rotating frame, such as coherence and population trans
(19–22), selective excitation (23–28), composite pulses for
decoupling (29, 30), and isotropic mixing (31–33), etc., can
all be achieved in the eigenframes using the PIPs. In addit
it also introduces a new way to construct composite pul
with not only amplitude and phase modulations but also off
modulation. Moreover, the evolution of the density operator
the eigenframes as described by Eq. [13] can be treated fur
by using the well-known coherent average theory (34), making

the calculation even more convenient for some sequence
multiple PIPs.
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